天道不一定酬所有勤
但是,天道只酬勤
Hollis出品的全套Java面试宝典不来了解一下吗?

Java GC工作原理

Hollis出品的全套Java面试宝典不来了解一下吗?

GC的基本原理

GC是什么?为什么要有GC呢?

GC是垃圾收集的意思(GarbageCollection),内存处理是编程人员容易出现问题的地方,忘记或者错误的内存回收会导致程序或系统的不稳定甚至崩溃,Java提供的GC功能可以自动监测对象是否超过作用域从而达到自动回收内存的目的,Java语言没有提供释放已分配内存的显示操作方法。

所以,Java的内存管理实际上就是对象的管理,其中包括对象的分配和释放。
对于程序员来说,分配对象使用new关键字;释放对象时,只要将对象所有引用赋值为null,让程序不能够再访问到这个对象,我们称该对象为"不可达的".GC将负责回收所有"不可达"对象的内存空间。
对于GC来说,当程序员创建对象时,GC就开始监控这个对象的地址、大小以及使用情况。通常,GC采用有向图的方式记录和管理堆(heap)中的所有对象。通过这种方式确定哪些对象是"可达的",哪些对象是"不可达的".当GC确定一些对象为"不可达"时,GC就有责任回收这些内存空间。但是,为了保证GC能够在不同平台实现的问题,Java规范对GC的很多行为都没有进行严格的规定。例如,对于采用什么类型的回收算法、什么时候进行回收等重要问题都没有明确的规定。因此,不同的JVM的实现者往往有不同的实现算法。这也给Java程序员的开发带来行多不确定性。本文研究了几个与GC工作相关的问题,努力减少这种不确定性给Java程序带来的负面影响。

增量式GC(IncrementalGC)

GC在JVM中通常是由一个或一组进程来实现的,它本身也和用户程序一样占用heap空间,运行时也占用CPU.当GC进程运行时,应用程序停止运行。因此,当GC运行时间较长时,用户能够感到Java程序的停顿,另外一方面,如果GC运行时间太短,则可能对象回收率太低,这意味着还有很多应该回收的对象没有被回收,仍然占用大量内存。因此,在设计GC的时候,就必须在停顿时间和回收率之间进行权衡。一个好的GC实现允许用户定义自己所需要的设置,例如有些内存有限有设备,对内存的使用量非常敏感,希望GC能够准确的回收内存,它并不在意程序速度的放慢。另外一些实时网络游戏,就不能够允许程序有长时间的中断。增量式GC就是通过一定的回收算法,把一个长时间的中断,划分为很多个小的中断,通过这种方式减少GC对用户程序的影响。虽然,增量式GC在整体性能上可能不如普通GC的效率高,但是它能够减少程序的最长停顿时间。
SunJDK提供的HotSpotJVM就能支持增量式GC.HotSpotJVM缺省GC方式为不使用增量GC,为了启动增量GC,我们必须在运行Java程序时增加-Xincgc的参数。HotSpotJVM增量式GC的实现是采用TrainGC算法。它的基本想法就是,将堆中的所有对象按照创建和使用情况进行分组(分层),将使用频繁高和具有相关性的对象放在一队中,随着程序的运行,不断对组进行调整。当GC运行时,它总是先回收最老的(最近很少访问的)的对象,如果整组都为可回收对象,GC将整组回收。这样,每次GC运行只回收一定比例的不可达对象,保证程序的顺畅运行。

为什么要分代

分代的垃圾回收策略,是基于这样一个事实:不同的对象的生命周期是不一样的。因此,不同生命周期的对象可以采取不同的收集方式,以便提高回收效率。
在Java程序运行的过程中,会产生大量的对象,其中有些对象是与业务信息相关,比如Http请求中的Session对象、线程、Socket连接,这类对象跟业务直接挂钩,因此生命周期比较长。但是还有一些对象,主要是程序运行过程中生成的临时变量,这些对象生命周期会比较短,比如:String对象,由于其不变类的特性,系统会产生大量的这些对象,有些对象甚至只用一次即可回收。
试想,在不进行对象存活时间区分的情况下,每次垃圾回收都是对整个堆空间进行回收,花费时间相对会长,同时,因为每次回收都需要遍历所有存活对象,但实际上,对于生命周期长的对象而言,这种遍历是没有效果的,因为可能进行了很多次遍历,但是他们依旧存在。因此,分代垃圾回收采用分治的思想,进行代的划分,把不同生命周期的对象放在不同代上,不同代上采用最适合它的垃圾回收方式进行回收。

  如何分代
  如图所示:

gc.jpg

虚拟机中的共划分为三个代:年轻代(Young Generation)、年老点(Old Generation)和持久代(Permanent Generation)。其中持久代主要存放的是Java类的类信息,与垃圾收集要收集的Java对象关系不大。年轻代和年老代的划分是对垃圾收集影响比较大的。

年轻代:

  所有新生成的对象首先都是放在年轻代的。年轻代的目标就是尽可能快速的收集掉那些生命周期短的对象。年轻代分三个区。一个Eden区,两个Survivor区(一般而言)。大部分对象在Eden区中生成。当Eden区满时,还存活的对象将被复制到Survivor区(两个中的一个),当这个Survivor区满时,此区的存活对象将被复制到另外一个Survivor区,当这个Survivor去也满了的时候,从第一个Survivor区复制过来的并且此时还存活的对象,将被复制“年老区(Tenured)”。需要注意,Survivor的两个区是对称的,没先后关系,所以同一个区中可能同时存在从Eden复制过来 对象,和从前一个Survivor复制过来的对象,而复制到年老区的只有从第一个Survivor去过来的对象。而且,Survivor区总有一个是空的。同时,根据程序需要,Survivor区是可以配置为多个的(多于两个),这样可以增加对象在年轻代中的存在时间,减少被放到年老代的可能。

年老代:

在年轻代中经历了N次垃圾回收后仍然存活的对象,就会被放到年老代中。因此,可以认为年老代中存放的都是一些生命周期较长的对象。

持久代:

  用于存放静态文件,如今Java类、方法等。持久代对垃圾回收没有显着影响,但是有些应用可能动态生成或者调用一些class,例如Hibernate等,在这种时候需要设置一个比较大的持久代空间来存放这些运行过程中新增的类。持久代大小通过-XX:MaxPermSize=进行设置。

什么情况下触发垃圾回收
由于对象进行了分代处理,因此垃圾回收区域、时间也不一样。GC有两种类型:Scavenge GCFull GC

Scavenge GC
一般情况下,当新对象生成,并且在Eden申请空间失败时,就会触发Scavenge GC,对Eden区域进行GC,清除非存活对象,并且把尚且存活的对象移动到Survivor区。然后整理Survivor的两个区。这种方式的GC是对年轻代的Eden区进行,不会影响到年老代。因为大部分对象都是从Eden区开始的,同时Eden区不会分配的很大,所以Eden区的GC会频繁进行。因而,一般在这里需要使用速度快、效率高的算法,使Eden去能尽快空闲出来。
Full GC
对整个堆进行整理,包括Young、Tenured和Perm。Full GC因为需要对整个对进行回收,所以比Scavenge GC要慢,因此应该尽可能减少Full GC的次数。在对JVM调优的过程中,很大一部分工作就是对于FullGC的调节。有如下原因可能导致Full GC:
· 年老代(Tenured)被写满
· 持久代(Perm)被写满
· System.gc()被显示调用
·上一次GC之后Heap的各域分配策略动态变化

详解finalize函数

finalize是位于Object类的一个方法,该方法的访问修饰符为protected,由于所有类为Object的子类,因此用户类很容易访问到这个方法。由于,finalize函数没有自动实现链式调用,我们必须手动的实现,因此finalize函数的最后一个语句通常是super.finalize()。通过这种方式,我们可以实现从下到上实现finalize的调用,即先释放自己的资源,然后再释放父类的资源。
根据Java语言规范,JVM保证调用finalize函数之前,这个对象是不可达的,但是JVM不保证这个函数一定会被调用。另外,规范还保证finalize函数最多运行一次。
很多Java初学者会认为这个方法类似与C++中的析构函数,将很多对象、资源的释放都放在这一函数里面。其实,这不是一种很好的方式。原因有三,其一,GC为了能够支持finalize函数,要对覆盖这个函数的对象作很多附加的工作。其二,在finalize运行完成之后,该对象可能变成可达的,GC还要再检查一次该对象是否是可达的。因此,使用finalize会降低GC的运行性能。其三,由于GC调用finalize的时间是不确定的,因此通过这种方式释放资源也是不确定的。
通常,finalize用于一些不容易控制、并且非常重要资源的释放,例如一些I/O的操作,数据的连接。这些资源的释放对整个应用程序是非常关键的。在这种情况下,程序员应该以通过程序本身管理(包括释放)这些资源为主,以finalize函数释放资源方式为辅,形成一种双保险的管理机制,而不应该仅仅依靠finalize来释放资源。
下面给出一个例子说明,finalize函数被调用以后,仍然可能是可达的,同时也可说明一个对象的finalize只可能运行一次。

classMyObject{
  Testmain;//记录Test对象,在finalize中时用于恢复可达性
  publicMyObject(Testt)
  {
  main=t;//保存Test对象
  }
  protectedvoidfinalize()
  {
  main.ref=this;//恢复本对象,让本对象可达
  System.out.println("Thisisfinalize");//用于测试finalize只运行一次
  }
}

  

classTest{
  MyObjectref;
  publicstaticvoidmain(String[]args)
{
  Testtest=newTest();
  test.ref=newMyObject(test);
  test.ref=null;//MyObject对象为不可达对象,finalize将被调用
  System.gc();
  if(test.ref!=null)System.out.println("MyObject还活着");
  }
}

运行结果:
Thisisfinalize

MyObject还活着:此例子中,需要注意的是虽然MyObject对象在finalize中变成可达对象,但是下次回收时候,finalize却不再被调用,因为finalize函数最多只调用一次。

程序如何与GC进行交互

Java2增强了内存管理功能,增加了一个java.lang.ref包,其中定义了三种引用类。这三种引用类分别为SoftReferenceWeakReferencePhantomReference.通过使用这些引用类,程序员可以在一定程度与GC进行交互,以便改善GC的工作效率。这些引用类的引用强度介于可达对象和不可达对象之间。
创建一个引用对象也非常容易,例如如果你需要创建一个SoftReference对象,那么首先创建一个对象,并采用普通引用方式(可达对象);然后再创建一个SoftReference引用该对象;最后将普通引用设置为null.通过这种方式,这个对象就只有一个SoftReference引用。同时,我们称这个对象为SoftReference对象。
SoftReference的主要特点是据有较强的引用功能。只有当内存不够的时候,才进行回收这类内存,因此在内存足够的时候,它们通常不被回收。另外,这些引用对象还能保证在Java抛出OutOfMemory异常之前,被设置为null.它可以用于实现一些常用图片的缓存,实现Cache的功能,保证最大限度的使用内存而不引起OutOfMemory.以下给出这种引用类型的使用伪代码;

//申请一个图像对象
Imageimage=newImage();//创建Image对象
  …
//使用image
  …
//使用完了image,将它设置为soft引用类型,并且释放强引用;
SoftReferencesr=newSoftReference(image);
image=null;
  …
//下次使用时
if(sr!=null)image=sr.get();
else{
//由于GC由于低内存,已释放image,因此需要重新装载;
image=newImage();
sr=newSoftReference(image);
}

Weak引用对象与Soft引用对象的最大不同就在于:GC在进行回收时,需要通过算法检查是否回收Soft引用对象,而对于Weak引用对象,GC总是进行回收。Weak引用对象更容易、更快被GC回收。虽然,GC在运行时一定回收Weak对象,但是复杂关系的Weak对象群常常需要好几次GC的运行才能完成。Weak引用对象常常用于Map结构中,引用数据量较大的对象,一旦该对象的强引用为null时,GC能够快速地回收该对象空间。
Phantom引用的用途较少,主要用于辅助finalize函数的使用。Phantom对象指一些对象,它们执行完了finalize函数,并为不可达对象,但是它们还没有被GC回收。这种对象可以辅助finalize进行一些后期的回收工作,我们通过覆盖Reference的clear()方法,增强资源回收机制的灵活性。

一些Java编程的建议

根据GC的工作原理,我们可以通过一些技巧和方式,让GC运行更加有效率,更加符合应用程序的要求。一些关于程序设计的几点建议:
  1.最基本的建议就是尽早释放无用对象的引用。大多数程序员在使用临时变量的时候,都是让引用变量在退出活动域(scope)后,自动设置为null.我们在使用这种方式时候,必须特别注意一些复杂的对象图,例如数组,队列,树,图等,这些对象之间有相互引用关系较为复杂。对于这类对象,GC回收它们一般效率较低。如果程序允许,尽早将不用的引用对象赋为null.这样可以加速GC的工作。
  2.尽量少用finalize函数。finalize函数是Java提供给程序员一个释放对象或资源的机会。但是,它会加大GC的工作量,因此尽量少采用finalize方式回收资源。
  3.如果需要使用经常使用的图片,可以使用soft应用类型。它可以尽可能将图片保存在内存中,供程序调用,而不引起OutOfMemory.
  4.注意集合数据类型,包括数组,树,图,链表等数据结构,这些数据结构对GC来说,回收更为复杂。另外,注意一些全局的变量,以及一些静态变量。这些变量往往容易引起悬挂对象(danglingreference),造成内存浪费。
  5.当程序有一定的等待时间,程序员可以手动执行System.gc(),通知GC运行,但是Java语言规范并不保证GC一定会执行。使用增量式GC可以缩短Java程序的暂停时间。

Java的垃圾回收机制

a、 停止—复制(stop-and-copy):先暂停程序的运行,然后将所有存活的对象从当前堆复制到另一个堆,没有复制的全部都是垃圾。当对象被复制到新堆时,它们是一个挨着一个的,紧凑的。效率很低:首先,得有两个堆空间占用率200%;其次,垃圾较少时,复制大量的活着的对象,是很大的浪费。

b、 标记—清扫(mark-and-sweep):从对战和静态存储区出发,遍历所有的引用,进而找出所有存活的对象,如果活着,就标记。只有全部标记完毕的时候,清理动作才开始。在清理的时候,没有标记的对象将会被释放,不会发生任何肤质动作。但是盛夏的对空间是不连续的,垃圾回收器要是希望得到连续空间的话,就得重新整理剩下的对象。

c、 注意:“停止—复制”的意思是这种垃圾回收动作不是在后台进行的;相反,垃圾回收动作发生的同时,程序将会被暂停。有人将垃圾回收视为低优先级的后台进程,而事实上并不是这样,当可用内存数量比较低的时候,Sun版本的垃圾回收器就会暂停运行程序。同样,“标记-清扫”工作也必须在程序暂停的情况下才能进行。

d、 在java虚拟机中,内存分配是以较大的块为单位的。每个块内都用相应的代数(generation count)来记录它是否还存活。代数随着引用的次数而增加。垃圾回收器将对上次回收动作之后的新分配的块进行整理。这对处理大量短命的临时对象很有帮助。垃圾回收器会定期进行完整的清理动作——大型对象仍然不会被复制(只是代数增加),内涵小型对象的那些块则被复制并整理。Java虚拟机会进行监视,如果所有对象都很稳定,垃圾回收器的效率降低的话,就切换到“标记—清扫”方式;同样,java虚拟机会追踪“标记—清扫”的效果,要是堆空间出现很多碎片,就会切换到“停止—复制”方式。这就是“自适应”技术。

总结:Java垃圾回收器是一种“自适应的、分代的、停止—复制、标记-清扫”式的垃圾回收器

赞(3)
如未加特殊说明,此网站文章均为原创,转载必须注明出处。HollisChuang's Blog » Java GC工作原理
Hollis出品的全套Java面试宝典不来了解一下吗?

评论 3

  1. #1

    GC线程吧?

    sunnymoonue8年前 (2016-07-24)回复
  2. #2

    图片刷不出来

    曼陀罗8年前 (2017-06-02)回复
  3. #3

    SoftReference 那个有点问题吧,应该不用判断sr是不是null的,而是应该判断sr.get()是不是null

    hang2df7年前 (2018-06-13)回复

HollisChuang's Blog

联系我关于我